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Abstract. We have extended the average-bond-energy method to study the strained-hetero-
junction band offset. Through a detailed study of the effect of hydrostatic and uniaxial strains
on the energy of the average valence band edge Ev.av relative to the average bond energy, we find
that Ev.av remains basically unchanged under different strain conditions, and that the deformation
potential av.av corresponding to Ev.av is much smaller than the av for other analogous methods.
Thus, in the average-bond-energy method, the valence band offset �Ev can be obtained neglecting
av.av . It is only necessary to calculate the valence band maximum energy relative to the average
bond energy before the strain and to use the experimental values of the deformation potential b and
spin–orbit splitting �0 to determine the splitting value for the valence band. It is not necessary to
calculate the band structures under various strain conditions. This simplified calculation method
involves only a small calculational burden; therefore, it can conveniently be used to predict the
strained-heterojunction band offset.

1. Introduction

Semiconductor superlattices and heterostructures are of considerable technological importance
because of their unique electronic properties. They allow great flexibility to be achieved in
design by the variation of the thickness of the layers and the state of strain. At present, the
main method used for designing and tailoring the strained-heterojunction band offset is to
adjust the substrate material’s lattice constant. This causes the epitaxially grown layer to
experience different strain conditions, and thus changes the band structure of the strained-
layer and the band offset of the strained heterojunction. The band offset is an important
parameter for designing the characteristics of new materials and electronic devices involving
heterojunctions and superlattices. Therefore, if the band offset of a strained heterojunction
can be conveniently predicted under different conditions of strain, this will undoubtedly be
of significance for designing and optimizing new devices. In view of this, Van de Walle and
Martin extended the model-solid theory (MST) [1] to include the calculation of strained-hetero-
junction band offsets [2]. Ohler et al [3] recently also adopted a similar method, extending
the charge-neutrality-level (CNL) theory founded by Tersoff [4] to include the calculation of
the band offsets of strained heterojunctions. In this paper, we review the main features of our
average-bond-energy (ABE) [5] method, and suggest a simplified scheme for calculation of
the valence band offset (VBO) for strained heterojunctions, through the investigation of the
effects of the strain condition on the average valence band edge Ev.av relative to the average
bond energy Em. The scheme can considerably reduce the calculational burden and enhance
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the reliability of calculation results. It will be more convenient for the calculation of the
strained-heterojunction band offsets. In order to allow comparison with the results of Ohler
et al [3] and Van de Walle [2], most of the material parameters used in this paper are the same
as theirs (see table 1).

Table 1. The material parameters used in the calculations of this paper: lattice constants a0 (in Å),
elastic constants C11, C12 (in Mbar), spin–orbit splittings �0 (in eV), and the experimental values
of the shear deformation potential b (in eV). These values of b are all from reference [3] except
that for GaP which is from reference [14].

Semiconductor a0 C11 C12 �0 b (experimental)

Si 5.43 16.75 6.5 0.04 −2.10
Ge 5.65 13.15 4.94 0.30 −2.86
InP 5.87 10.22 5.76 0.11 −1.60
InAs 6.06 8.33 4.53 0.38 −1.80
GaP 5.45 14.11 6.26 0.08 −1.50
GaAs 5.65 12.23 5.71 0.34 −1.70
AlAs 5.65 12.50 5.34 0.28 −1.50

In the next section, we present our band-offset calculation method based on the ABE
theory. Section 3 contains a description of the effects of strain on band edges. In section 4,
we present the numerical testing of the contributions from each strain component. Section 5
contains a description of the simplified ABE method and its application to strain. The last
section gives our conclusions.

2. The average-bond-energy method

There are two main groups of methods used in theoretical studies of the heterojunction band
offset. One is the methods based on self-consistent supercell calculation (SCSC) or self-
consistent interface calculation (SCSI)—for example, the self-consistent supercell calculation
of Christensen [6] and the self-consistent interface calculation of Van de Walle and Martin [1].
The linearized augmented-plane-wave (LAPW) method of Zunger and co-workers [7] was the
first to determine the difference between the core levels on the two sides of the heterojunction
interface by using a self-consistent supercell calculation, and then to calculate the band offset.
It is also a method that belongs to this group. In this first group of methods, based on self-
consistent calculation, all the effects of an interface are taken into account as a whole. So they
are very precise theoretical calculation methods. But the degree of computational complexity
of such calculations is very high, and it is difficult to determine what physical mechanisms are
dominant in the valence band offset. This group of methods involves a self-consistent supercell
calculation for each strain condition; thus the calculational burden will be very large. The other
group of methods is based on introducing a certain reference energy level to line up the two bulk
band structures of the heterojunction, and then calculating the band offset—for example, the
dielectric midgap energy (DME) method [8], the charge-neutrality-point (CNP) method [9],
and the tight-binding (TB) method [10]. In this group of methods, because a reference level
is adopted to line up the band structures of the heterojunction, it is only necessary to calculate
the energy difference between the highest valence level and the reference level to determine
the valence band offset of the heterojunction; it is not necessary to perform a self-consistent
supercell calculation. Thus the calculational burden is reduced substantially. In the study
of the band offset of a strained-layer heterojunction, the deformation potential of the bulk is
used to investigate the rules governing the heterojunction band offset and strain conditions.
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The average-bond-energy method adopted in this paper also belongs to this second group
of methods. The average bond energy and the average-bond-energy method will be briefly
introduced below.

Chen and Sher [11] established the method of calculation of the bonding orbital energy
Eb and anti-bonding orbital energy Ea for a tetrahedrally bonding semiconductor in a virtual-
crystal-approximation study of semiconducting alloy band structure:

Eb = 〈bj (R)|Ĥ |bj (R)〉 = 1

4N

4∑
n=1

∑
k

Ei
n(k) (1)

Ea = 〈aj (R)|Ĥ |aj (R)〉 = 1

4N

8∑
n=5

∑
k

Ei
n(k) (2)

where the bonding state is

|bj (R)〉 =
4∑

n=1

cnj |Wn(R)〉

and the anti-bonding state is

|aj (R)〉 =
8∑

n=5

dnj |Wn(R)〉

(j = 1, 2, 3, 4 indicates the tetrahedral bonding); the Wannier function can be constructed
from the eigenvectors of the energy band:

|Wn(R)〉 = 1√
N

∑
k

eikR|�nk〉

where Ei
n(k) and |�nk〉 are the eigenvalue and eigenvector of the semiconductor energy band,

respectively. Wang et al called the mid-point of the energy gap between Eb and Ea the average
bond energy:

Em = 1

2
(Eb + Ea) = 1

8N

8∑
n=1

∑
k

Ei
n(k). (3)

In a study involving a superlattice LMTO band-structure calculation [12, 13], they found that
the average bond energy Em will be aligned on the two sides of the heterojunction interface. On
the basis of this, they established a new reference-level heterojunction band-offset calculation
method, taking the average bond energy Em as the reference level. This method only requires
one to calculate the two bulk differences of the (energies of the) highest valence bands Ev from
Em for the heterojunction:

Ev = Ei
v − Em. (4)

Then, according to Em, one aligns the two sides of the heterojunction interface to get the
valence band offset of the A/B-type heterojunction:

�Ev(A/B) = Ev(B) − Ev(A). (5)

Figure 1 also shows how to calculate �Ev(A/B) according to the alignment of the average
bond energy.

If material A is the larger-band-gap material of the two materials which constitute the
A/B heterojunction, the VBO of the heterojunction is positive. Equation (5) indicates that the
heterojunction VBO is determined by the valence band edges relative to Em. So we should
study the rules governing the change of the band edge Ev with different strain conditions
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Figure 1. Calculation of �Ev(A/B) based on the average-bond-energy method.

to obtain �Ev for the strained heterojunctions. For a strained heterojunction, because the
strained-layer band structure changes with the strain conditions, the valence band maximum
Ei

v , band edge Ev relative to Em, and Em are all related to the strain conditions. We hope to
express the relative-energy shift between the average valence band edge and Em as a function
of the hydrostatic pressure and the uniaxial strains, i.e. to find the deformation potential for the
average valence band edges relative to Em. This corresponds to the deformation potential of
the band edges relative to the charge-neutrality level or model vacuum level used by the CNL
method [3] and the MST method [2].

3. Effects of strain on the valence band edge

If semiconductors A and B have different equilibrium lattice constants a0, when A is grown
epitaxially on substrate B along the (001) direction, then the epitaxial layer A will be positioned
according to the deformation. From elasticity mechanics, one can get for the strained layer A

a‖ = aB
‖ (6)

a⊥ = a0

[
1 − 2

C12

C11
(a‖/a0 − 1)

]
(7)

where aB
‖ is the lattice constant of substrate material B in the direction parallel to the interface;

a‖ and a⊥ are the lattice constants parallel and perpendicular to the interface, respectively. C11

and C12 are elastic constants for material A. The biaxial strain is normally divided into isotropic
and uniaxial contributions. For the above (001) biaxial strain indicated by equations (6) and
(7), the strain tensor components are [2]

ε‖ = a‖/a0 − 1 ε⊥ = a⊥/a0 − 1

and

Tr(ε) = 2ε‖ + ε⊥ ≈ �/�0 − 1 (8)

εax = ε⊥ − ε‖ = (a⊥ − a‖)/a0 (9)
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where �0 and � are the unstrained and strained primitive-cell volumes. The trace Tr(ε) of the
strain tensor is the relative-volume change of the crystal but does not change the symmetry of
the crystal, so it mainly induces shifts of the eigenvalues and does not induce the splitting of the
degenerate energy band. εax is the uniaxial component of the strain tensor; it causes the crystal
to deviate from the cubic structure and changes the crystal symmetry but does not change the
crystal volume, so it does induce a splitting of the degenerate energy band according to the
average values. If the strained heterojunction A/B is grown on substrate material B along
the (001) direction, the lattice constant aB

‖ of substrate material B will remain unchanged, but
the parallel lattice constant a‖ of material A will change and become equal to the value of aB

‖
(see equation (6)). The uniaxial strain will split the threefold-degenerate valence band into the
nondegenerate energy band Ei

v(1) and the doubly degenerate energy band Ei
v(2). The average

of Ei
v(1) and Ei

v(2) is [2Ei
v(2) + Ei

v(1)]/3; it is called the average of the valence band edges,
Ei

v.av . Let δE001 = 2
3 (E

i
v(1) − Ei

v(2)); then

δE001 = 2bεax (10)

where b is the shear deformation potential. In the above band structure, the spin–orbit splitting
has not been included. Because of the effects of the (001) uniaxial strain and spin–orbit
splitting, the degenerate valence band will be split into three nondegenerate bands. The energy
separations between the three nondegenerate valence band maxima (heavy hole, light hole,
and split-off hole) and their average value are given by

�Ev2 = 1

3
�0 − 1

2
δE001 (11)

�Ev1 = −1

6
�0 +

1

4
δE001 +

1

2

[
�2

0 + �0 δE001 +
9

4
(δE001)

2

]1/2

(12)

�Ev3 = −1

6
�0 +

1

4
δE001 − 1

2

[
�2

0 + �0 δE001 +
9

4
(δE001)

2

]1/2

(13)

where �0 is the spin–orbit splitting. If the deformation and spin–orbit splitting are considered
simultaneously, then Ei

v = Ei
v.av + �Evj.max , and the valence band maximum with relative to

Em is

Ev = Ev.av + �Evj.max (14)

where Ei
v.av is the average valence band maximum which is obtained from a bulk band

calculation. The average valence band edge Ev.av relative to Em is given by

Ev.av = Ei
v.av − Em. (15)

Next we will study the relationships between (i) the average valence band maxima Ei
v.av ,

Ev.av , and the average bond energy Em, and (ii) Tr(ε) and εax , respectively. In the band
calculation, the band structures of the strain are generated by the first-principles pseudopotential
method. It includes scalar relativistic effects but no spin–orbit-splitting effects; the ab initio
norm-conserving ion pseudopotentials are taken from the tables of Bachelet, Hamann, and
Schluter [16, 17] and the exchange–correlation potential uses the Ceperley–Alder form [18].
The plane waves with kinetic energies up to 14.5 Ryd are included. 10 and 20 special points
for the isotropic and uniaxial strains are used for sampling the k-space [19]. The method used
for calculating the deformation potential is as described below (using Si as an example).

(1) Keeping the face-centred-cubic structure unchanged for Si crystal (i.e. a⊥ = a‖, εax = 0),
we select seven different lattice constant values around the Si equilibrium lattice constant
(see table 1; a0 = 5.43 Å); Tr(ε) changes between −0.05 and +0.05. We use the band-
structure calculation method to calculate the band structures for the seven different strain



7764 Shu-Ping Li et al

states, then to calculate their average valence band maximum Ei
v.av , Ev.av , and the average

bond energy Em. For the different strain states, the calculated results for Ei
v.av , Em, and

Ev.av are indicated by dots in figures 2(a) and 2(b). From figure 2(a), we see that the values
of Ei

v.av and Em increase with volume compression and decrease with volume expansion.
The changes of both Ei

v.av and Em with Tr(ε) are much the same and are nearly linear.
Because Ei

v.av decreases more quickly with increase of Tr(ε) than with that of Em, Ev.av

decreases with increasing Tr(ε) (see the dots in figure 2(b)). The calculated results for the
change in Ev.av with Tr(ε) are obtained by linear fitting; the result is a straight line, shown
in figure 2(b). Its slope av.av is −0.38 eV. av.av is the deformation potential corresponding
to Ev.av used to characterize quantitatively the relationship between Ev.av and Tr(ε),
corresponding to av in the MST [2] and CNL [3] methods.

(2) Keeping the crystal volume unchanged (i.e. Tr(ε) = 0), we appropriately change the value
of the lattice constant a‖ on the x–y plane and the value of the lattice constant a⊥ on the
z-axis (i.e. the uniaxially strained (001) direction), and take seven different values of εax

between −0.10 and +0.10. We use the band-structure calculation method to calculate the
band structure for the different uniaxial strain conditions, and to find the corresponding
values of Ei

v.av , Em, and Ev.av . The calculated results are indicated by dots in figures 3(a)
and 3(b). Figure 3(a) shows that Ei

v.av and Em are minima at εax = 0. Under uniaxial
strain, Ei

v.av and Em increase a little no matter whether εax is larger or smaller than zero.
Ei

v.av increases a little more than Em. Therefore, Ev.av is minimum at εax = 0. When
εax > 0 or εax < 0, Ev.av increases a little with increasing εax (absolute values; see
figure 3(b)). To obtain the relationship between Ev.av and εax , the calculated results are
fitted by a quadratic expression; the fitted curve is shown in figure 3(b). Its first-order-term
coefficient is zero; its quadratic-term coefficient cv.av is 0.91 eV. cv.av is also a deformation
potential of second order which characterizes quantitatively the relationship between Ev.av
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Figure 2. (a) The energy of the average valence band maxima Ei
v.av and the average bond energy

Em as functions of the hydrostatic component Tr(ε) of the strain. (b) The energy of the average
valence band edge Ev.av relative to Em as a function of the hydrostatic component Tr(ε) of the
strain.
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Em as functions of the uniaxial component εax of the strain. (b) The energy of the average valence
band edge Ev.av relative to Em as a function of the uniaxial component εax of the strain.

and εax . At the same time, the calculated results for the value of the valence band split,
δE001, in seven different strain states, are linearly fitted according to equation (10) to get
the shear deformation potential b of Si, and b = −2.36 eV.

We also use a calculation method similar to that used for Si to study the deformation
potentials of Ge, InP, InAs, GaAs, AlAs, and GaP. We find that the variations are similar to
that for Si. The calculated results for av.av , cv.av , and b are listed in table 2. Comparing
the calculated values of the deformation potential b given in table 2 with the experimental
values of b given in table 1, we can see that this paper’s calculated results are close to the
experimental results. The Ev.0-values in table 2 are the calculated results for the valence band
maximum relative to Em under equilibrium conditions (before deformation). For comparison,
the calculated deformation potentials for the average valence band maximum, av , relative to
the charge-neutrality level [3] and the model vacuum level [2], as well as the analogous values
of the screened deformation potentials obtained by Cardona and Christensen [15], are also
listed in table 2.

The strain state of the heterojunction strained layer determined by equations (6) and (7)
includes volume and shape changes. In view of the above-studied results from the ABE
method, we introduce two deformation potentials av.av and cv.av to express the strain effects
for the average valence band:

Ev.av = Ev.0 + av.av Tr(ε) + cv.avε
2
ax. (16)

Substituting equation (14) into equation (16), we get

Ev = Ev.0 + av.av Tr(ε) + cv.avε
2
ax + �Evj.max (17)

where Ev.0 is the unstrained valence band edge relative to Em, av.av Tr(ε) the quantum change
caused by the hydrostatic strain, and cv.avε

2
ax the quantum change caused by the (001) uniaxial

strain.
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Table 2. The calculated results for the VBM at equilibrium, Ev.0, the calculated deformation
potentials for the AVBM, av.av , cv.av , relative to the ABE, and the deformation potential b obtained
in this paper. The deformation potential av of the MST method (relative to the model vacuum level)
[2] and the CNL method (relative to the charge-neutrality level) [3], and the analogous values of the
screened deformation potential av of Cardona and Christensen (CC) [15], are also listed (in eV).

This work CNL MST CC

Semiconductor Ev.0 av.av cv.av b av av av

Si 0.33 −0.38 0.91 −2.36 −2.59 2.46 −1.6
Ge 0.74 −0.31 0.52 −2.85 −4.84 1.24 −1.6
InP −0.26 −0.15 0.31 −1.60 −2.34 1.27 −0.4
InAs −0.03 −0.11 0.38 −1.88 −1.29 1.00 −0.6
GaP −0.13 −0.33 0.30 −1.50 1.70 −1.5
GaAs 0.14 −0.28 0.32 −1.92 −1.68 1.16 −1.6
AlAs −0.25 0.22 1.54 −1.67 −2.24 2.47 −1.2

In the MST [2] and CNL [3] methods, the deformation potentials of second order and
likewise cv.avε

2
ax are neglected. In order to further our understanding of the magnitude and

the role of each term on the right-hand side of equation (17) and the rationality for neglecting
cv.avε

2
ax , we carried out the following numerical calculation for the strained layer of the actual

heterojunction under elastic strain conditions.

4. Examination of the contribution of each strain component

For the strained heterojunction, the biaxial strain tensor of the strained layer includes the
hydrostatic and uniaxial components of the strain. That is, Tr(ε) and εax are not equal to
zero; the effect of both of them on Ev should be considered (equation (17)). For simplicity, the
notation for the strained heterojunction is as follows: the material above the backwards oblique
line ‘\’ or forwards oblique line ‘/’ is the strained layer, while that below it is the substrate.
That is, A/B means that B is used as the substrate, and A is the strained layer, while A\B
means that A is used as the substrate, and B is the strained layer. Table 3 includes 14 kinds

Table 3. The calculated results for av.av Tr(ε), cv.avε2
ax , and �Evj.max (in eV).

Strained
layer Substrate aB

‖ Tr(ε) εax av.av Tr(ε) cv.avε
2
ax �Evj.max

Ge Si 5.43 −0.0486 0.0682 0.015 0.002 0.295
Si Ge 5.65 0.0496 −0.0720 −0.019 0.005 0.303
InAs GaAs 5.65 −0.0617 0.1412 0.007 0.008 0.381
GaAs InAs 6.06 0.0774 −0.1403 −0.022 0.006 0.507
InAs AlAs 5.65 −0.0617 0.1412 0.007 0.008 0.381
AlAs InAs 6.06 0.0831 −0.1346 0.018 0.028 0.428
InP GaAs 5.65 −0.0327 0.0797 0.005 0.002 0.164
GaAs InP 5.87 0.0415 −0.0753 −0.012 0.002 0.303
InP InAs 6.06 0.0283 −0.0689 −0.004 0.001 0.228
InAs InP 5.87 −0.0286 0.0655 0.003 0.002 0.244
GaP GaAs 5.65 0.0408 −0.0693 −0.013 0.001 0.212
GaAs GaP 5.45 −0.0377 0.0685 0.011 0.001 0.230
InP GaP 5.45 −0.0624 0.1522 0.009 0.007 0.280
GaP InP 5.87 0.0857 −0.1454 −0.028 0.006 0.438
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of strained heterojunction. They are Si\Ge, Si/Ge, GaAs\InAs, GaAs/InAs, AlAs\InAs,
AlAs/InAs, GaAs\InP, GaAs/InP, InP\InAs, InP/InAs, GaP\GaAs, GaP/GaAs, GaP\InP,
and GaP/InP. The values of a‖ for the strained layers are the same as the equilibrium lattice
constants of the substrates. From the lattice constants and the elastic coefficients given in
table 1, a⊥ for the strained layer is calculated from equations (6) and (7), and Tr(ε) and εax

are calculated from equations (8) and (9). Then av.av Tr(ε) and cv.avε
2
ax are determined from

the calculated results for the deformations av.av and cv.av listed in table 2. At the same time,
�Evj.max can be determined using the experimental values of b and �0 given in table 1 through
equations (11)–(13). All of the calculated results are listed in table 3.

From table 3, for the three strain-effect terms in equation (17), av.av Tr(ε), cv.avε
2
ax , and

�Evj.max , the value of cv.avε
2
ax is a minimum, and can be neglected; the value of �Evj.max

is at its largest and is the main factor determining the Ev-value; the value of av.av Tr(ε) is
somewhat larger than that of cv.avε

2
ax . Neglecting cv.avε

2
ax in equation (17), the expression for

Ev is simplified to

Ev = Ev.0 + av.av Tr(ε) + �Evj.max. (18)

The value of Ev.0 in table 2 and the value of �Evj.max in table 3 are of the same order of
magnitude. Therefore both of them are major factors in determining the Ev-value. But the
value of av.av Tr(ε) is much smaller than both of them. Since the absolute value of av.av in
the ABE method is much smaller than the absolute value of av in the MST [2] and CNL [3]
methods (see table 2), the absolute value of av.av Tr(ε) is especially small. This is an important
feature of the ABE method. Next, we study further the effect of av.av Tr(ε) on Ev and the
VBO.

5. Simplification of the ABE method and results of the application to strain

From table 2, it can be seen that the value of av.av in this paper is about an order of magnitude
smaller than the value of av in the CNL [3] method, and is even much smaller than the value
of av in the MST [2] method in absolute value. Therefore, for the ABE method, it is necessary
to understand further the effect of the av.av Tr(ε) term on �Ev for the strained heterojunction.
In the calculation of Ev and �Ev , if we retain the av.av Tr(ε) term in equation (18) (this
is called method 1), or neglect the av.av Tr(ε) term (this is called method 2), the values of
Ev.0, av.av Tr(ε), and �Evj.max are taken from tables 2 and 3. For the calculation of Ev for
the substrate material (unstrained), since the calculated band structures do not include the
spin–orbit effect, Ev = Ev.0 − 1

3�0 was added to Ev a posteriori—where the values of Ev.0

and �0 are taken from table 2 and table 1, respectively. Using the calculated results for the
strained layer and the substrate, �Ev for the strained heterojunction can be obtained from
equation (5). The results calculated by method 1 and method 2 are listed in table 4 for 14 kinds
of heterojunction. The results from the CNL [3] and MST [2] methods and the experiments
are also listed for comparison.

From the results in table 4, we can obtain the following conclusions:

(1) For nine kinds of strained heterojunction for which the experimental values of �Ev have
been found, the extent of the agreement of the results calculated in this paper with
the experimental data is better than for the MST and CNL methods for GaAs\InAs,
GaAs/InAs, AlAs\InAs, AlAs/InAs, Si/Ge, and GaP\GaAs heterojunctions; it is only
worse than for the MST and CNL methods for GaAs\InP and GaAs/InP heterojunctions.

(2) From the results calculated by method 1 and method 2 and given in table 4, we can see that
the change of �Ev is less than 0.03 eV, which is within experimental error. Therefore,
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Table 4. Calculated valence band offsets �Ev of A/B and A\B. The results from the MST [2]
and CNL [3] methods and from experiment are also listed for comparison. A positive valence
band offset means that the valence band edge of semiconductor A (Sm.A) lies at a lower position
than that of semiconductor B. The experimental values are quoted from reference [3] except where
otherwise indicated.

�Ev

A/B or A\B a‖ Sm.A Method 1 Method 2 CNL MST Experiment

Si\Ge 5.43 Si 0.71 0.69 0.61 0.88 0.74 and 0.83

Si/Ge 5.65 Si 0.23 0.21 0.00 0.32 0.17 and 0.22

GaAs\InAs 5.65 GaAs 0.10 0.10 0.32 0.43 −0.04 and 0.17a

GaAs/InAs 6.06 GaAs −0.53 −0.55 −0.33 −0.30 −0.52

AlAs\InAs 5.65 AlAs 0.51 0.51 0.70 1.02 0.29 and 0.5b

AlAs/InAs 6.06 AlAs −0.10 −0.08 0.23 0.29 −0.10

GaAs\InP 5.65 GaAs −0.34 −0.35 −0.25 −0.11 −0.17

GaAs/InP 5.87 GaAs −0.65 −0.67 −0.60 −0.46 −0.56

InP\InAs 5.87 InP 0.44 0.44 0.54

InP/InAs 6.06 InP 0.13 0.13 0.21

GaP\GaAs 5.45 GaP 0.48 0.47 0.66 0.55c and 0.43d

GaP/GaAs 5.65 GaP 0.18 0.17 0.28

GaP\InP 5.45 GaP 0.13 0.12 0.22

GaP/InP 5.87 GaP −0.50 −0.53 −0.54

a Reference [20].
b Reference [21].
c Reference [22].
d Reference [23].

for the calculation of �Ev based on the average-bond-energy method, the formula for
calculating Ev (equation (18)) can be further simplified to

Ev = Ev.0 + �Evj.max. (19)

Thus, it is clear that the value of �Ev for the strained heterojunction can be obtained by
a simple algebraic operation if Ev.0 for the unstrained bulk material and the experimental
values of b and �0 are known (see equations (11)–(13)). There is no need to calculate the
strained band structures and deformation potentialsav.av . Obviously, this will considerably
reduce the calculational burden and make it equivalent to that for a normal lattice-matched
heterojunction. This is a unique advantage of the ABE method. Because in the MST [2]
and CNL [3] methods, the value of av (absolute value) is not small enough (see table 2),
a similar simplification cannot be made. Thus, for the VBO calculation for a strained
heterojunction based on the ABE method, the calculational burden will be smaller than
those in the MST [2] and CNL [3] methods.

(3) The simplified scheme for calculation of the strained-heterojunction VBO by the ABE
method (refer to equations (19) and (5)) provides a more definite physical picture. That is,
the strained-heterojunction VBO consists of two parts: one is the difference between
the positions of the valence band maxima of the two bulk materials at equilibrium
(i.e. unstrained; the difference is Ev.0(B) − Ev.0(A)); the other is the change of the
valence band edge caused by the interaction between the shear strains and with the
spin–orbit splitting, �Evj.max . The latter can be adjusted by changing the strain state.
Therefore, provided that we know the experimental values of the lattice constants, elastic
coefficients, spin–orbit splitting energies �0, and shear deformation potentials b for the



Band-offset calculation for a strained heterojunction 7769

two semiconductors which constitute the heterojunction, the valence band offset of the
strained heterojunction can be predicted.

(4) The valence band edge Ev.av is, relative to the reference level, Ev.av = Ei
v.av −Er , where

the average valence band maximum Ei
v.av is given by a band calculation, and Er designates

the reference level. Due to the different reference levels, the deformation potentials av of
the CNL and MST methods are different, and their signs are opposite. For the MST and
ABE methods, the deformation potentials corresponding to Ev.av , Ei

v.av , and Er can be
represented as av = ai − ar and av.av = ai − am; both Ei

v.av are generated by ab initio
pseudopotential band calculations for the semiconductor crystal changing with strain.
Because both of the values of Ei

v.av as functions of Tr(ε) are the same, the values of ai will
be the same too. The difference between av and av.av arises mainly from the difference
of the deformation potentials from the reference level. It is an intrinsic property of the
average bond energy that the value of av.av is extremely small. Therefore, the simplified
calculation scheme for the strained-heterojunction VBO just relies on a characteristic of
the ABE method.

6. Conclusions

The procedure of the ABE method for calculating the strained-heterojunction VBO is analogous
to the procedures of the MST [2] and CNL [3] methods. We use the position of the average
band edge Ev.av relative to the average bond energy, instead of Ev.av as used in the MST
and CNL methods, which is calculated relative to the model vacuum level and the charge-
neutrality level, respectively. The calculated deformation potentials av.av corresponding to
Ev.av are quite different from the equivalent av of the MST and CNL methods. Note that
all deformation potentials av of the CNL method have opposite sign to those of the MST
method. We also show that the magnitude of the deformation potentials av is determined by an
intrinsic property of the reference level. Any reference-level theory regarding band offsets can
be extended to the case of strain by a similar procedure; however, the deformation potentials
av.av of the ABE method are particularly small and negligible. Thus it is only necessary to
calculate the valence band edge Ev.0 relative to the average bond energy for zero strain, and
to use the experimental values of b and �0 to calculate the value of the VBO of the strained
heterojunction. It is not necessary to calculate the band structures of the different strain states,
and this will be convenient in predicting band offsets of strained heterojunctions.
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